全球数字财富领导者

银江技术取得CN112712117B专利,减弱突变信息对结果的影响

2024-03-31 01:21:59
金融界
金融界
关注
0
0
获赞
粉丝
喜欢 0 0收藏举报
— 分享 —
摘要:金融界2024年3月28日消息,据国家知识产权局公告,银江技术股份有限公司取得一项名为“一种基于全卷积注意力的多元时间序列分类方法及系统“,授权公告号CN112712117B,申请日期为2020年12月。专利摘要显示,本发明涉及一种基于全卷积注意力的多元时间序列分类方法及系统,本发明利用图像领域中全卷积的设计思路,使用2D卷积滤波器捕获多元时间序列局部变量特征以学习相邻变量之间的联动关系,同时使用2D卷积滤波器捕获多元时间序列局部时间特征以学习相邻时间之间的趋势信息,减弱突变信息对结果的影响;采用卷积加自注意力模型,多核卷积获取多种局部特征,自注意力模型计算多种局部特征和非局部特征的权重,提供了不同的视角去审视多元时间序列数据;采用注意力模型分别融合对应视角的变量和时间特征,同时学习到变量的全局依赖关系以及时间的全局依赖关系;采用权重矩阵方法融合多视角的特征,学习更全面更准确的时间变量交互特征。

金融界2024年3月28日消息,据国家知识产权局公告,银江技术股份有限公司取得一项名为“一种基于全卷积注意力的多元时间序列分类方法及系统“,授权公告号CN112712117B,申请日期为2020年12月。

专利摘要显示,本发明涉及一种基于全卷积注意力的多元时间序列分类方法及系统,本发明利用图像领域中全卷积的设计思路,使用2D卷积滤波器捕获多元时间序列局部变量特征以学习相邻变量之间的联动关系,同时使用2D卷积滤波器捕获多元时间序列局部时间特征以学习相邻时间之间的趋势信息,减弱突变信息对结果的影响;采用卷积加自注意力模型,多核卷积获取多种局部特征,自注意力模型计算多种局部特征和非局部特征的权重,提供了不同的视角去审视多元时间序列数据;采用注意力模型分别融合对应视角的变量和时间特征,同时学习到变量的全局依赖关系以及时间的全局依赖关系;采用权重矩阵方法融合多视角的特征,学习更全面更准确的时间变量交互特征。

敬告读者:本文为转载发布,不代表本网站赞同其观点和对其真实性负责。FX168财经仅提供信息发布平台,文章或有细微删改。
go